
Moveit Config interface investigation
Reference: https://moveit.picknik.ai/main/index.html

MOVEIT2 package gives more capability and functionality for serial manipulators
Based on Figure 1. We need to develop or outsource the grey rectangles
these are dependencies that need to be met: PCD, FCL, CHOMP, OMPL, SBPL And the
controllers.
The solvers (: PCD, FCL, CHOMP, OMPL, SBPL) above are already existent as plugins.

https://moveit.picknik.ai/main/index.html

Upcoming work:
● Investigating controllers
● Making Moveit Config. Using Moveit Setup Assistant

Moveit on low lever controllers

Investigating controllers (using ROS2_CONTROL)
Relevant links:

● Ros2 control home
● ROSCON2023 workshop ros2control on steroids
● Ros2_control demos and examples
● Simulator integration with ros_control

Existent nodes and topics
Using rqt-graph, all circles are nodes, and rectangles are topics
The current existent configuration in DexHand:
Joint state publisher with USB serial:

Zoomed view of the usb_serial, the current configuration

Desired change to usb_serial:

https://moveit.picknik.ai/humble/doc/examples/setup_assistant/setup_assistant_tutorial.html
https://moveit.picknik.ai/humble/doc/examples/controller_configuration/controller_configuration_tutorial.html
https://control.ros.org/master/index.html
https://github.com/ros-controls/control.ros.org/blob/master/doc/resources/ROSCon2023_Workshop_ros2_control_on_Steroids.pdf
https://github.com/ros-controls/ros2_control_demos
https://control.ros.org/master/doc/simulators/simulators.html

Gesture controller, with usb_serial:

Pretty interesting to read about ROS2 workshop

Prework to ROS2_control

● Setup the firmware through usb_serial to subscribe to joint angles from (joint_state
type message) and act accordingly

●
Steps to get ROS2_control working

● Create a YAML file with the configuration of the controller manager and two
controllers.

○ Textbook Example
○ Schunk ros driver example
○ You only need to worry about the structure of the yaml file, controller

selection, its parameters …
○ : position controller, effort_controllers, and velocity_ controllers. Then a

trajectory controller, which is a layer on top, sends (position or velocity) joint
space commands over time to the driver.

http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/JointState.html
http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/JointState.html
https://github.com/ros-controls/ros2_control_demos/blob/master/example_1/bringup/config/rrbot_controllers.yaml
https://github.com/SCHUNK-SE-Co-KG/schunk_svh_ros_driver/blob/main/schunk_svh_driver/etc/controller_default.yaml
https://control.ros.org/master/doc/ros2_controllers/position_controllers/doc/userdoc.html
https://control.ros.org/master/doc/ros2_controllers/effort_controllers/doc/userdoc.html
https://control.ros.org/master/doc/ros2_controllers/velocity_controllers/doc/userdoc.html
https://control.ros.org/master/doc/ros2_controllers/joint_trajectory_controller/doc/userdoc.html

○ Explanation: The ros2_control has a standard controller collection and
configurable controller hierarchy, that can be specified based on a yaml file.
Then the package controllers get (summoned) accordingly, and the YAML file
includes parameters such as PID and motor limits etc for each controller.

● Extend the robot’s URDF description with needed <ros2_control> tags. Using macro
files (xacro) instead of pure URDF is recommended. (Example URDF for RRBot).

○ Text example
○ Chunk ros2 hand example (why not)

● “Create a launch file to start the node with Controller Manager. You can use a default
ros2_control node (recommended) or integrate the controller manager in your
software stack”. (Example launch file for RRBot).

Appendix next page:

https://control.ros.org/master/doc/ros2_controllers/doc/controllers_index.html#available-controllers
https://github.com/ros-controls/ros2_control_demos/blob/master/example_1/description/ros2_control/rrbot.ros2_control.xacro
https://github.com/SCHUNK-SE-Co-KG/schunk_svh_ros_driver/blob/ros2-humble/schunk_svh_driver/urdf/schunk_svh_driver.xacro
https://github.com/ros-controls/ros2_control_demos/blob/master/example_1/bringup/launch/rrbot.launch.py

Appendix
● Other hand control stacks:

Allegro, has two controllers, PD, and velocity saturation joint controller, Allegro
seems to have developed their own ‘custom’ controller, written 10 years ago (ROS1)
leapHand: custom controller, control it by publishing joint states. Leap hand
currently does not have it moveit!, current control is directly through joint space.
Shadowhand: used pr2 control mechanisms, which is the basis for ros_control
(ros1), from the following image. They have many interfaces but mainly use the joint
space publisher interface: (particularly in the Open AI Rubic cubecase).

https://github.com/simlabrobotics/allegro_hand_ros/tree/master/allegro_hand_controllers
https://github.com/leap-hand/LEAP_Hand_API/blob/main/ros_module/ros_example.py

	Moveit Config interface investigation
	Upcoming work:
	Investigating controllers (using ROS2_CONTROL)
	Existent nodes and topics

	Appendix

